Fst 7 Phase 2 Pdf Download
Abstract
Two-dimensional Ruddlesden–Popper layered metal-halide perovskites have attracted increasing attention for their desirable optoelectronic properties and improved stability compared to their three-dimensional counterparts. However, such perovskites typically consist of multiple quantum wells with a random well width distribution. Here, we report phase-pure quantum wells with a single well width by introducing molten salt spacer n-butylamine acetate, instead of the traditional halide spacer n-butylamine iodide. Due to the strong ionic coordination between n-butylamine acetate and the perovskite framework, a gel of a uniformly distributed intermediate phase can be formed. This allows phase-pure quantum well films with microscale vertically aligned grains to crystallize from their respective intermediate phases. The resultant solar cells achieve a power conversion efficiency of 16.25% and a high open voltage of 1.31 V. After keeping them in 65 ± 10% humidity for 4,680 h, under operation at 85 °C for 558 h, or continuous light illumination for 1,100 h, the cells show <10% efficiency degradation.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.
Data availability
The datasets generated and/or analysed during the current study are available within the paper and its Supplementary Information. Source data are provided with this paper.
Code availability
Any applicable code relevant to the findings is available from the authors upon reasonable request.
References
- 1.
Quintero-Bermudez, R. et al. Compositional and orientational control in metal halide perovskites of reduced dimensionality. Nat. Mater. 17, 900–907 (2018).
Article Google Scholar
- 2.
Zhou, N. et al. Exploration of crystallization kinetics in quasi two-dimensional perovskite and high performance solar cells. J. Am. Chem. Soc. 140, 459–465 (2017).
Article Google Scholar
- 3.
Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).
Article Google Scholar
- 4.
Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).
Article Google Scholar
- 5.
Lin, Y. et al. Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019).
Article Google Scholar
- 6.
Quan, L. et al. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138, 2649–2655 (2016).
Article Google Scholar
- 7.
Tsai, H. et al. Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells. Nat. Commun. 9, 2130 (2018).
Article Google Scholar
- 8.
Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).
Article Google Scholar
- 9.
Yan, K. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).
Article Google Scholar
- 10.
McMeekin, D. P. et al. Crystallization kinetics and morphology control of formamidinium-cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution. Adv. Mater. 29, 1607039 (2017).
Article Google Scholar
- 11.
Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).
Article Google Scholar
- 12.
Cao, D. et al. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137, 7843–7850 (2015).
Article Google Scholar
- 13.
Soe, C. M. M. et al. Understanding film formation morphology and orientation in high member 2D Ruddlesden–Popper perovskites for high-efficiency solar cells. Adv. Energy Mater. 8, 1700979 (2018).
Article Google Scholar
- 14.
Qing, J. et al. Aligned and graded type-II Ruddlesden-Popper perovskite films for efficient solar cells. Adv. Energy Mater. 8, 1800185 (2018).
Article Google Scholar
- 15.
Shang, Y. et al. Highly stable hybrid perovskite light-emitting diodes based on Dion-Jacobson structure. Sci. Adv. 5, eaaw8072 (2019).
Article Google Scholar
- 16.
Proppe, A. et al. Synthetic control over quantum well width distribution and carrier migration in low-dimensional perovskite photovoltaics. J. Am. Chem. Soc. 140, 2890–2896 (2018).
Article Google Scholar
- 17.
Liu, J. et al. Observation of internal photoinduced electron and hole separation in hybrid two-dimensional perovskite films. J. Am. Chem. Soc. 139, 1432–1435 (2017).
Article Google Scholar
- 18.
Liang, Y. et al. Lasing from mechanically exfoliated 2D homologous Ruddlesden–Popper perovskite engineered by inorganic layer thickness. Adv. Mater. 39, 1903030 (2019).
Article Google Scholar
- 19.
Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).
Article Google Scholar
- 20.
Yantara, N. et al. Designing efficient energy funneling kinetics in Ruddlesden–Popper perovskites for high-performance light-emitting diodes. Adv. Mater. 30, 1800818 (2018).
Article Google Scholar
- 21.
Byun, J. et al. Efficient visible quasi-2D perovskite light-emitting diodes. Adv. Mater. 28, 7515–7520 (2016).
Article Google Scholar
- 22.
Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).
Article Google Scholar
- 23.
Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).
Article Google Scholar
- 24.
Zhang, X. et al. Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Adv. Mater. 30, 1707166 (2018).
Article Google Scholar
- 25.
Chao, L. et al. Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 5, 995–1006 (2019).
Article Google Scholar
- 26.
Xia, Y. et al. Management of perovskite intermediates for highly efficient inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 5, 3193–3202 (2017).
Article Google Scholar
- 27.
Li, L. et al. The additive coordination effect on hybrids perovskite crystallization and high-performance solar cell. Adv. Mater. 28, 9862–9868 (2016).
Article Google Scholar
- 28.
Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).
Article Google Scholar
- 29.
Liu, Y. et al. Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci. Adv. 5, eaaw2543 (2019).
Article Google Scholar
- 30.
Chen, P. et al. In situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells. Adv. Funct. Mater. 28, 1706923 (2018).
Article Google Scholar
- 31.
Ono, L. K. et al. Progress toward stable lead halide perovskite solar cells. Joule 2, 1961–1990 (2018).
Article Google Scholar
- 32.
Spanopoulos, I. et al. Uniaxial expansion of the 2D Ruddlesden−Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019).
Article Google Scholar
- 33.
Okamoto, K. et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 3, 601–605 (2004).
Article Google Scholar
- 34.
Ravel, B. et al. Athena, Artemis, Hephaestus: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).
Article Google Scholar
- 35.
Nahringbauer, I. et al. Hydrogen bond studies. XIV. The crystal structure of ammonium acetate. Acta Cryst. 23, 956–965 (1967).
Article Google Scholar
Download references
Acknowledgements
This work was financially supported by the Natural Science Foundation of China (51972172, 61705102, 61605073, 61935017, 91833304 and 91733302), the National Key R&D Program of China (2017YFB1002900, 2017YFA0403400), the Macau Science and Technology Development Fund (FDCT-116/2016/A3, FDCT-091/2017/A2 and FDCT-014/2017/AMJ), the University of Macau (SRG2016-00087-FST and MYRG2018-00148-IAPME), Natural Science Foundation of Guangdong Province, China (2019A1515012186), Projects of International Cooperation and Exchanges NSFC (51811530018), Young 1000 Talents Global Recruitment Program of China, Jiangsu Specially-Appointed Professors Program and 'Six Talent Peaks' Project in Jiangsu Province, China.
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Source data
Rights and permissions
About this article
Cite this article
Liang, C., Gu, H., Xia, Y. et al. Two-dimensional Ruddlesden–Popper layered perovskite solar cells based on phase-pure thin films. Nat Energy 6, 38–45 (2021). https://doi.org/10.1038/s41560-020-00721-5
Download citation
-
Received:
-
Accepted:
-
Published:
-
Issue Date:
-
DOI : https://doi.org/10.1038/s41560-020-00721-5
Further reading
Posted by: ethanethanshimanukie0269685.blogspot.com
Source: https://www.nature.com/articles/s41560-020-00721-5
Post a Comment for "Fst 7 Phase 2 Pdf Download"